Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature

نویسندگان

  • James A Coker
  • Priya DasSarma
  • Jeffrey Kumar
  • Jochen A Müller
  • Shiladitya DasSarma
چکیده

BACKGROUND The model halophile Halobacterium sp. NRC-1 was among the first Archaea to be completely sequenced and many post-genomic tools, including whole genome DNA microarrays are now being applied to its analysis. This extremophile displays tolerance to multiple stresses, including high salinity, extreme (non-mesophilic) temperatures, lack of oxygen, and ultraviolet and ionizing radiation. RESULTS In order to study the response of Halobacterium sp. NRC-1 to two common stressors, salinity and temperature, we used whole genome DNA microarrays to assay for changes in gene expression under differential growth conditions. Cultures grown aerobically in rich medium at 42 degrees C were compared to cultures grown at elevated or reduced temperature and high or low salinity. The results obtained were analyzed using a custom database and microarray analysis tools. Growth under salt stress conditions resulted in the modulation of genes coding for many ion transporters, including potassium, phosphate, and iron transporters, as well as some peptide transporters and stress proteins. Growth at cold temperature altered the expression of genes involved in lipid metabolism, buoyant gas vesicles, and cold shock proteins. Heat shock showed induction of several known chaperone genes. The results showed that Halobacterium sp. NRC-1 cells are highly responsive to environmental changes at the level of gene expression. CONCLUSION Transcriptional profiling showed that Halobacterium sp. NRC-1 is highly responsive to its environment and provided insights into some of the specific responses at the level of gene expression. Responses to changes in salt conditions appear to be designed to minimize the loss of essential ionic species and abate possible toxic effects of others, while exposure to temperature extremes elicit responses to promote protein folding and limit factors responsible for growth inhibition. This work lays the foundation for further bioinformatic and genetic studies which will lead to a more comprehensive understanding of the biology of a model halophilic Archaeon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1

Halobacteriumsp. NRC-1 is an extremely halophilic archaeon that is easily cultured and genetically tractable. Since its genome sequence was completed in 2000, a combination of genetic, transcriptomic, proteomic, and bioinformatic approaches have provided insights into both its extremophilic lifestyle as well as fundamental cellular processes common to all life forms. Here, we review post-genomi...

متن کامل

Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors.

We have investigated anaerobic respiration of the archaeal model organism Halobacterium sp. strain NRC-1 by using phenotypic and genetic analysis, bioinformatics, and transcriptome analysis. NRC-1 was found to grow on either dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as the sole terminal electron acceptor, with a doubling time of 1 day. An operon, dmsREABCD, encoding a putative ...

متن کامل

The cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis.

Genetic and nutritional analyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open reading frame (ORF) Vng1581C encodes a protein with nucleoside triphosphate:adenosylcobinamide-phosphate nucleotidyltransferase enzyme activity. This activity was previously associated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicu...

متن کامل

UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1

BACKGROUND A variety of strategies for survival of UV irradiation are used by cells, ranging from repair of UV-damaged DNA, cell cycle arrest, tolerance of unrepaired UV photoproducts, and shielding from UV light. Some of these responses involve UV-inducible genes, including the SOS response in bacteria and an array of genes in eukaryotes. To address the mechanisms used in the third branch of l...

متن کامل

Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1

BACKGROUND Most studies of the transcriptional response to UV radiation in living cells have used UV doses that are much higher than those encountered in the natural environment, and most focus on short-wave UV (UV-C) at 254 nm, a wavelength that never reaches the Earth's surface. We have studied the transcriptional response of the sunlight-tolerant model archaeon, Halobacterium sp. NRC-1, to l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Saline Systems

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2007